В догонку к предыдущему посту: по-моему, следующая зарисовка Кэролла прекрасна до извращения:
Льюис Кэролл
Двухчастная инвенция, или Что Черепаха сказала Ахиллу?
Ахилл догнал черепаху и с удовольствием устроился у нее на спине.
- Итак, наше состязание окончено? - спросила Черепаха. - Вам все-таки удалось преодолеть всю дистанцию, хотя она и состояла из бесконечной последовательности отрезков, и достичь финиша? А ведь, по правде говоря, я думала, будто какой-то мудрец доказал, что сделать это нельзя.
- Почему нельзя? - возразил Ахилл. - Еще как можно! Да что можно - уже сделано! Решено мимоходом. Видите ли, длина отрезков неограниченно убывала и поэтому…
- А если бы длина отрезков неограниченно возрастала? - перебила его Черепаха. - Что тогда?
- Тогда бы я не сидел там, где я сижу, - скромно ответствовал Ахилл, - а вы к этому времени уже успели бы несколько раз обойти вокруг земного шара.
- Вы мне льстите, то есть, я хочу сказать, вы мне мстите, - заметила Черепаха. - Я почти расплющена: вес-то у вас немалый. В чем, в чем, а в этом никакой ошибки нет. Если позволите, я лучше расскажу вам о состязании на другую дистанцию. Большинство людей ошибочно полагают, будто в этом состязании их отделяют от финиша лишь два-три шага. В действительности же, чтобы добраться до финиша, необходимо преодолеть бесконечно много этапов, и каждый последующий этап длиннее предыдущего.
- С превеликим удовольствием! - с жаром воскликнул греческий воин, доставая из шлема огромный блокнот и карандаш (в те далекие времена карманы были лишь у очень немногих греческих воинов). - Я весь внимание! И пожалуйста, говорите помедленнее: ведь стенографию еще не изобрели!
- О первая аксиома Евклида! - мечтательно промолвила Черепаха, - что может быть прекраснее тебя?
И добавила, обращаясь к Ахиллу:
- Вы любите «Начала» Евклида?
- Безумно! Вряд ли можно сильнее восхищаться трактатом, который не выйдет в свет в течении еще нескольких столетий!
- Прекрасно! Мы воспользуемся рассуждением, содержащимся в первой аксиоме. Нам понадобятся лишь два шага и выведенные из них заключения. Для удобства последующих ссылок обозначим суждения А, В, и Z. Итак будьте любезны записать в свой блокнот следующее:
(А) Равные одному и тому же равны между собой.
(В) Две стороны этого треугольника равны одному и тому же.
(Z) Две стороны этого треугольника равны между собой.
читать дальше
Льюис Кэролл
Двухчастная инвенция, или Что Черепаха сказала Ахиллу?
Ахилл догнал черепаху и с удовольствием устроился у нее на спине.
- Итак, наше состязание окончено? - спросила Черепаха. - Вам все-таки удалось преодолеть всю дистанцию, хотя она и состояла из бесконечной последовательности отрезков, и достичь финиша? А ведь, по правде говоря, я думала, будто какой-то мудрец доказал, что сделать это нельзя.
- Почему нельзя? - возразил Ахилл. - Еще как можно! Да что можно - уже сделано! Решено мимоходом. Видите ли, длина отрезков неограниченно убывала и поэтому…
- А если бы длина отрезков неограниченно возрастала? - перебила его Черепаха. - Что тогда?
- Тогда бы я не сидел там, где я сижу, - скромно ответствовал Ахилл, - а вы к этому времени уже успели бы несколько раз обойти вокруг земного шара.
- Вы мне льстите, то есть, я хочу сказать, вы мне мстите, - заметила Черепаха. - Я почти расплющена: вес-то у вас немалый. В чем, в чем, а в этом никакой ошибки нет. Если позволите, я лучше расскажу вам о состязании на другую дистанцию. Большинство людей ошибочно полагают, будто в этом состязании их отделяют от финиша лишь два-три шага. В действительности же, чтобы добраться до финиша, необходимо преодолеть бесконечно много этапов, и каждый последующий этап длиннее предыдущего.
- С превеликим удовольствием! - с жаром воскликнул греческий воин, доставая из шлема огромный блокнот и карандаш (в те далекие времена карманы были лишь у очень немногих греческих воинов). - Я весь внимание! И пожалуйста, говорите помедленнее: ведь стенографию еще не изобрели!
- О первая аксиома Евклида! - мечтательно промолвила Черепаха, - что может быть прекраснее тебя?
И добавила, обращаясь к Ахиллу:
- Вы любите «Начала» Евклида?
- Безумно! Вряд ли можно сильнее восхищаться трактатом, который не выйдет в свет в течении еще нескольких столетий!
- Прекрасно! Мы воспользуемся рассуждением, содержащимся в первой аксиоме. Нам понадобятся лишь два шага и выведенные из них заключения. Для удобства последующих ссылок обозначим суждения А, В, и Z. Итак будьте любезны записать в свой блокнот следующее:
(А) Равные одному и тому же равны между собой.
(В) Две стороны этого треугольника равны одному и тому же.
(Z) Две стороны этого треугольника равны между собой.
читать дальше